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Abstract: Free fRdicu1 ~~nufafi~n ~a~lo~~d by f~~et~~Zs~~yZ i~d~de-~T~~vted ring- 
opening of (~)-carvQne-dichlor5~f~e adducfs leads to an unusual carbon skeleton 
rearrangement. The carbony group of cmvme enhances fhe reactivity of the radical 
cyclization, changes fhp ring-opening pathway and leads to the jhnafion of G new 
fricyclic dione product. 

We recently discovered a reaction sequence that interpolates the elements of ketene into a 

Lldiene and forms a new seven-membered ring ketone (eq l).Q This method consists of 

three steps: 2 + 2 cycloaddition of dichloroketene,s free radical 1,5-cyclization,4 and TMSI-ZnI2 

ring-opening.5 

We report here a new variation of this reaction sequence starting with (R)-carvone. The 

diastereomeric adducts IR,R)-1 and fR,S)-1 are obtained in good yield by treatment of readily 

available (R)-carvone with dichloroketene (eq 2). The (R,R)-1 isomer is isolated from the 

(Rkarvone &RH69% O?#sI-1 12% 

mixture by crystallization (mp 129-130 “C). The diaatereomeric dichlorocyclobutanones (RR)-1 

and (R,S)-1 undergo annulation in stereospecific fashion. Thus, treatment of R,R-1 with id-n- 

butyltin hydride leads to an ooacyl radicai 2 (Scheme 1). Cycloaddition of the radical center to the 
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Scheme 1 

e. z [ o+o_oy]-_ q$ 
4,R=U 7l% 
5, R=H 51% 

enone double bond then yields a second, stable, &acyl radical 3. Selective hydrogen transfer from 

the less hindered face of radical 3 gives the anti-annulation product 4 as a single diastereomer 

(Scheme 1). If excess Bu&J-I is employed, the second chlorine can be reduced generating 3. The 

structures of (&N-l and 4 have been established by X -ray crystal structure analysis (Figure 1). 

figure I. X-Ray Structures of UVW and 4 

RR-1 4 

Radical cyclization of (J&S)-1 proceeds through a less stericauy favorable transition state 

(Scheme 2), with the four-membered ring folding on top of the six-membered ring, leading to 

formation of syn-annulation product 8, a diastereomer of 4. There is competition with the 

Scheme 2 
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radical cycloaddition (6 ~7)~ Thus, reduction of the carbon-chlorine bonds and addition of 

tributyltin radical to the cyclobutanone carbonyl (6 -10 -11) yields the Dstannyl ketyl 116 

(Scheme 2). 16-Cyclization of 11 gives alcohol 137 as a minor product. 

Treatment of 5 or 9 with TM!31 leads, by internal alkylation, to the unusual tricyclic dione 

16 (Scheme 3). Thus, when the cyclobutanone adduct 5 (or 9) is treated with TMSI-ZrtI2, the 

Scheme 3 

0 

J 16 730/o 

expected ring opening will produce the reactive iodide 14. Enolization and internal alkylation of 

14, yielding 15, may be assisted by trans-silylation. Hydrolytic workup then leads to the tricyclic 

dione 16.8 The ticyclic sesquiterpenes sativene, copacamphene, and sinularene possess this kind 

of ring skeletons 

We have also studied the analogous reaction of (R)-liionene (Scheme 4).1 Dichloroketene 

addition gives a diastereomeric mixture, which cannot be separated by chromatography. Tri-n- 

butyltin hydride treatment of the mixture gives cyclization product 17 as a mixture of two 

diastereomers, together with a minor amount of direct reduction product. As expected, 

treatment of 17 with TMSIZnI2 yielded ring-opening product 18. 
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